Poincaré–Birkhoff–Witt theorems

The Antwerp Algebra Colloquium

Pedro Tamaroff
Trinity College Dublin
Theorem (Poincaré–Birkhoff–Witt theorem)

Over a field of characteristic zero, the vector space underlying the universal enveloping algebra $U(\mathfrak{g})^\#$ is isomorphic to the symmetric algebra $S(\mathfrak{g}^\#)$, naturally with respect to Lie algebra maps.
Motivation and methods

Theorem (Poincaré–Birkhoff–Witt theorem)

Over a field of characteristic zero, the vector space underlying the universal enveloping algebra \(U(\mathfrak{g})^\# \) is isomorphic to the symmetric algebra \(S(\mathfrak{g}^\#) \), naturally with respect to Lie algebra maps.

This is an important result in areas such as:

- representation theory,
- homological algebra,
- deformation theory and quantization.
Motivation and methods

There are many results that fall within the “PBW” umbrella [SW15], which:

- exhibit an algebra as a deformation of another, ‘nicer’ algebra,
Motivation and methods

There are many results that fall within the “PBW” umbrella [SW15], which:

▶ exhibit an algebra as a deformation of another, ‘nicer’ algebra,
▶ give us a nice basis of normal monomials for an algebra,
Motivation and methods

There are many results that fall within the “PBW” umbrella [SW15], which:

- exhibit an algebra as a deformation of another, ‘nicer’ algebra,
- give us a nice basis of normal monomials for an algebra,
- associate a graded algebra to a non-graded algebra.
Motivation and methods

There are many results that fall within the “PBW” umbrella [SW15], which:

- exhibit an algebra as a deformation of another, ‘nicer’ algebra,
- give us a nice basis of normal monomials for an algebra,
- associate a graded algebra to a non-graded algebra.

We were motivated by the need to produce a formal framework to state and prove such theorems for more general classes of algebras.
Motivation and methods

Precursor: work of Mikhalev and Shestakov [MS14] on varieties of algebras. We were motivated by the need to make precise certain intuitive ideas in their work.
Motivation and methods

Precursor: work of Mikhalev and Shestakov [MS14] on varieties of algebras. We were motivated by the need to make precise certain intuitive ideas in their work.

Any functor $\mathcal{S}\text{Alg} \rightarrow \mathcal{T}\text{Alg}$ that ‘only changes operations’ has a left adjoint $A \mapsto U_\mathcal{S}(A)$, so we can attempt to state what a ‘PBW-type’ theorem is in this case.
Motivation and methods

Precursor: work of Mikhalev and Shestakov [MS14] on varieties of algebras. We were motivated by the need to make precise certain intuitive ideas in their work.

Any functor $S\text{Alg} \longrightarrow T\text{Alg}$ that ‘only changes operations’ has a left adjoint $A \longmapsto U_S(A)$, so we can attempt to state what a ‘PBW-type’ theorem is in this case.

What does it mean that this functor ‘does not depend on A’, exactly?
Motivation and methods

Precursor: work of Mikhalev and Shestakov [MS14] on varieties of algebras. We were motivated by the need to make precise certain intuitive ideas in their work.

Any functor $\mathcal{S}\text{Alg} \rightarrow \mathcal{T}\text{Alg}$ that ‘only changes operations’ has a left adjoint $A \mapsto U_\mathcal{S}(A)$, so we can attempt to state what a ‘PBW-type’ theorem is in this case.

What does it mean that this functor ‘does not depend on A’, exactly?

For us, this means there is an endofunctor X such that $U_\mathcal{S}(A)^\#$ is isomorphic to $X(A^\#)$, naturally with respect to \mathcal{T}-algebra maps.
We choose the language of endofunctors and monads to give the requisite formal framework.

1. We focus on functors ψ^* that arise by pulling back through a morphism of operads $\psi : P \to Q$ on some category that is nice enough.
We choose the language of endofunctors and monads to give the requisite formal framework.

1. We focus on functors ψ^* that arise by pulling back through a morphism of operads $\psi : P \to Q$ on some category that is nice enough.

2. The universal enveloping algebra functor is the pushforward $\psi_!$, given by taking a ‘relative tensor product over P’.
We choose the language of endofunctors and monads to give the requisite formal framework.

1. We focus on functors ψ^* that arise by pulling back through a morphism of operads $\psi : P \rightarrow Q$ on some category that is nice enough.

2. The universal enveloping algebra functor is the pushforward $\psi_!$, given by taking a ‘relative tensor product over P’.

3. Our main result shows that this functor is naturally isomorphic to some constant endofunctor on the underlying category if and only if Q is a free right P-module.
Consequences

- Organizes ‘all at once’ computations that were previously done at the level of algebras.
Consequences

- Organizes ‘all at once’ computations that were previously done at the level of algebras.
- It allows to use methods coming from rewriting theory and algebraic operads previously mainly used for purposes of homotopical algebra.
Consequences

- Organizes ‘all at once’ computations that were previously done at the level of algebras.
- It allows to use methods coming from rewriting theory and algebraic operads previously mainly used for purposes of homotopical algebra.
- It is fully intrinsic and functorial, and unravels the ‘mystery’ behind the natural question: what property of the pair (Lie, Ass) makes the PBW theorem work?
- It gives certificates in case the PBW property fails, in the form of homology classes, which can be effectively computed.
- Explains why one cannot expect certain type of results in positive characteristic.
Consequences

▶ Organizes ‘all at once’ computations that were previously done at the level of algebras.

▶ It allows to use methods coming from rewriting theory and algebraic operads previously mainly used for purposes of homotopical algebra.

▶ It is fully intrinsic and functorial, and unravels the ‘mystery’ behind the natural question: what property of the pair (Lie, Ass) makes the PBW theorem work?

▶ It gives certificates in case the PBW property fails, in the form of homology classes, which can be effectively computed.
Consequences

- Organizes ‘all at once’ computations that were previously done at the level of algebras.
- It allows to use methods coming from rewriting theory and algebraic operads previously mainly used for purposes of homotopical algebra.
- It is fully intrinsic and functorial, and unravels the ‘mystery’ behind the natural question: what property of the pair (Lie, Ass) makes the PBW theorem work?
- It gives certificates in case the PBW property fails, in the form of homology classes, which can be effectively computed.
- Explains why one cannot expect certain type of results in positive characteristic.
The Poincaré–Birkhoff–Witt property

Definition

An operad is a Schur endofunctor $P : C \to C$ endowed with an associative composition law $P \circ P \to P$ and a unit $\eta : 1 \to P$ for it.
The Poincaré–Birkhoff–Witt property

Definition
An operad is a Schur endofunctor $P : C \to C$ endowed with an associative composition law $P \circ P \longrightarrow P$ and a unit $\eta : 1 \longrightarrow P$ for it.

We were mostly interested in the case when $C = \text{Vect}$ so P takes the form

$$V \longmapsto \bigoplus_{j \geq 0} P(j) \otimes_{S_j} V^\otimes j$$

for some sequence of representations of the symmetric groups. In this language, elements of the right are ‘where we can operate on V’.

Pedro Tamaroff Trinity College Dublin
Monads define algebras

Definition

An algebra over an operad is an object $c \in C$ along with a structure map $\gamma_c : P(c) \to c$ such that $\gamma_c \mu_c = \gamma_c P(\gamma_c)$ and $\gamma_c \eta_c = 1_c$. Thus, $P(c) \to c$ consists of many maps $P(j) \otimes S_j V \otimes j \to V$, so each $x \in P(j)$ defines an equivariant operation $x : V \otimes j \to V$. For example, if $C(j)$ is the trivial representation, then we are considering multi-linear symmetric maps $S_j(V) \to V$. Defining the composition law in the only way possible defines the commutative operad, Com.
Monads define algebras

Definition

An algebra over an operad is an object $c \in C$ along with a structure map $\gamma_c : P(c) \to c$ such that $\gamma_c \mu_c = \gamma_c P(\gamma_c)$ and $\gamma_c \eta_c = 1_c$.

Thus, $P(c) \to c$ consists of many maps $P(j) \otimes_{S_j} V^\otimes j \to V$, so each $x \in P(j)$ defines an equivariant operation $x : V^\otimes j \to V$.

Pedro Tamaroff Trinity College Dublin
Monads define algebras

Definition

An algebra over an operad is an object $c \in C$ along with a structure map $\gamma_c : P(c) \to c$ such that $\gamma_c \mu_c = \gamma_c P(\gamma_c)$ and $\gamma_c \eta_c = 1_c$.

Thus, $P(c) \to c$ consists of many maps $P(j) \otimes_{S_j} V \otimes j \to V$, so each $x \in P(j)$ defines an equivariant operation $x : V \otimes j \to V$.

For example, if $C(j)$ is the trivial representation, then we are considering multi-linear symmetric maps $S_j(V) \to V$. Defining the composition law in the only way possible defines the *commutative operad*, Com.
Morphisms define envelopes

Definition

If $\psi : P \to Q$ is a morphism of operads, the pullback functor ψ^* sends a Q-algebra (c, γ_c) to the algebra $(c, \gamma_c \psi_c)$.
Morphisms define envelopes

Definition

If $\psi : P \rightarrow Q$ is a morphism of operads, the pullback functor ψ^* sends a Q-algebra (c, γ_c) to the algebra $(c, \gamma_c \psi_c)$.

The left adjoint $\psi_!$ of ψ^* is called the \textit{universal enveloping algebra functor of ψ}. It exists under mild assumptions on C.
Morphisms define envelopes

Definition

If \(\psi : P \to Q \) is a morphism of operads, the pullback functor \(\psi^* \) sends a \(Q \)-algebra \((c, \gamma_c)\) to the algebra \((c, \gamma_c \psi_c)\).

The left adjoint \(\psi_! \) of \(\psi^* \) is called the *universal enveloping algebra functor of \(\psi \).* It exists under mild assumptions on \(C \).

For example, if \(\psi_V : \mathbb{L}(V) \to T(V) \) is the natural inclusion of the free Lie algebra in the tensor algebra, \(\psi_!(\mathfrak{g}) \) is precisely \(U(\mathfrak{g}) \).
How to control this procedure?

The point of a Poincaré–Birkhoff–Witt theorem is to be able to control this abstract process. The only ingredient missing to prove our main result is the following:
How to control this procedure?

The point of a Poincaré–Birkhoff–Witt theorem is to be able to control this abstract process. The only ingredient missing to prove our main result is the following:

Definition

A right module over an operad P is another endofunctor M along with a map $M \circ P \rightarrow P$ compatible with the composition law of P.
How to control this procedure?

The point of a Poincaré–Birkhoff–Witt theorem is to be able to control this abstract process. The only ingredient missing to prove our main result is the following:

Definition

A right module over an operad P is another endofunctor M along with a map $M \circ P \to P$ compatible with the composition law of P.

A right module is *free* if it is isomorphic to one of the form $X \circ P$ where X is an endofunctor and the structure map is $1_X \circ \mu : X \circ F \circ F \to X \circ F$.
Recall we say the PBW property holds if there is an endofunctor X such that $\psi_!(A)^\#$ is isomorphic to $X(A^\#)$, naturally with respect to algebra maps.
The main result

Recall we say the PBW property holds if there is an endofunctor X such that $\psi_!(A)^\#$ is isomorphic to $X(A^\#)$, naturally with respect to algebra maps.

Theorem (Dotsenko–T. ’18)

A map of operads\footnote{More generally, monads} $\psi : P \to Q$ has the PBW property if and only if it makes Q into a free right P-module. In this case, the desired functor X is any free right basis of Q.
The main result

Recall we say the PBW property holds if there is an endofunctor X such that $\psi_!(A)\#$ is isomorphic to $X(A\#)$, naturally with respect to algebra maps.

Theorem (Dotsenko–T. ’18)

A map of operads $\psi : P \rightarrow Q$ has the PBW property if and only if it makes Q into a free right P-module. In this case, the desired functor X is any free right basis of Q.

Like the innocent method of counting in two ways, in this case the proof of the result does not matter as much as the fact we have many powerful tools to address whether an object is free or not: this is, more or less, the reason homological algebra exists!

1More generally, monads

Pedro Tamaroff Trinity College Dublin

Poincaré–Birkhoff–Witt theorems
I will use the following ‘homological hammer’, which is a weight graded version of the Nakayama lemma for representations and their bar constructions.
Applications

I will use the following ‘homological hammer’, which is a weight graded version of the Nakayama lemma for representations and their bar constructions.

Theorem

Let P be a weight graded operad, M a weight graded right P-module. Then:

$$M \text{ is free if and only if } H_+(B(M, P, 1)) = 0.$$

In such case, it is free with basis $X = H_0(B(M, P, 1))$.

Main takeaway: we do not have to guess a Poincaré–Birkhoff–Witt theorem, but rather compute something. The output of that result will tell us what the answer is.
I will use the following ‘homological hammer’, which is a weight graded version of the Nakayama lemma for representations and their bar constructions.

Theorem

Let P be a weight graded operad, M a weight graded right P-module. Then:

$$M \text{ is free if and only if } H_+(B(M, P, 1)) = 0.$$

In such case, it is free with basis $X = H_0(B(M, P, 1))$.

Main takeaway: we do not have to guess a Poincaré–Birkhoff–Witt theorem, but rather compute something. The output of that result will tell us what the answer is.
Classical PBW theorem

There is a map of operads $\text{Lie} \rightarrow \text{Ass}$ sending $[x_1, x_2] \mapsto x_1x_2 - x_2x_1$.

Theorem (Poincaré–Birkhoff–Witt)

The associative operad is free as a right module over the Lie operad with basis given by the endofunctor $V \mapsto S(V)$.

Proof. Filter the associative operad using the number of Lie brackets an operation uses (polarize the associative product). The associated graded module is exactly the operad controlling Poisson algebras. As a right module, it is $\text{Com} \circ \text{Lie}$, so it is free. By a spectral sequence argument, the associative operad is free with the same basis. □
Classical PBW theorem

There is a map of operads \(\text{Lie} \to \text{Ass} \) sending \([x_1, x_2] \mapsto x_1 x_2 - x_2 x_1\).

Theorem (Poincaré–Birkhoff–Witt)

The associative operad is free as a right module over the Lie operad with basis given by the endofunctor \(V \mapsto S(V) \).

Proof.

Filter the associative operad using the number of Lie brackets an operation uses (polarize the associative product). The associated graded module is exactly the operad controlling Poisson algebras. As a right module, it is \(\text{Com} \circ \text{Lie} \), so it is free. By a spectral sequence argument, the associative operad is free with the same basis.
A pre-Lie PBW theorem

Pre-Lie algebras: defined by a single operation $x_1 \circ x_2$ whose associator is symmetric in the last two variables. This implies $[x_1, x_2] = x_1 \circ x_2 - x_2 \circ x_1$ is a Lie bracket.
A pre-Lie PBW theorem

Pre-Lie algebras: defined by a single operation $x_1 \circ x_2$ whose associator is symmetric in the last two variables. This implies $[x_1, x_2] = x_1 \circ x_2 - x_2 \circ x_1$ is a Lie bracket.

Theorem (Dotsenko–T. ’18)

*The pre-Lie operad is free as a right module over the Lie operad with basis given by the endofunctor $V \mapsto R(S(V))$.***
A pre-Lie PBW theorem

Pre-Lie algebras: defined by a single operation $x_1 \circ x_2$ whose associator is symmetric in the last two variables. This implies $[x_1, x_2] = x_1 \circ x_2 - x_2 \circ x_1$ is a Lie bracket.

Theorem (Dotsenko–T. ’18)

The pre-Lie operad is free as a right module over the Lie operad with basis given by the endofunctor $V \mapsto R(S(V))$.

Here R is the endofunctor of rooted trees for which no vertex has exactly one child.
A pre-Lie PBW theorem

Proof.

1. Filter the pre-Lie operad using the number of Lie brackets an operation uses.
A pre-Lie PBW theorem

Proof.

1. Filter the pre-Lie operad using the number of Lie brackets an operation uses.
2. By a result of V. Dotsenko the associated graded module is exactly the operad controlling the F-manifold algebras of C. Hertling and Yu. I. Manin.
A pre-Lie PBW theorem

Proof.

1. Filter the pre-Lie operad using the number of Lie brackets an operation uses.
2. By a result of V. Dotsenko the associated graded module is exactly the operad controlling the F-manifold algebras of C. Hertling and Yu. I. Manin.
3. It can be shown it has a basis of tree monomials that is preserved under the action of the Lie operad, so it is free on some sub-basis of it.
A pre-Lie PBW theorem

Proof.

1. Filter the pre-Lie operad using the number of Lie brackets an operation uses.
2. By a result of V. Dotsenko the associated graded module is exactly the operad controlling the F-manifold algebras of C. Hertling and Yu. I. Manin.
3. It can be shown it has a basis of tree monomials that is preserved under the action of the Lie operad, so it is free on some sub-basis of it.
4. By a spectral sequence argument, the pre-Lie operad is free with the same basis.
Proof.

1. Filter the pre-Lie operad using the number of Lie brackets an operation uses.
2. By a result of V. Dotsenko the associated graded module is exactly the operad controlling the F-manifold algebras of C. Hertling and Yu. I. Manin.
3. It can be shown it has a basis of tree monomials that is preserved under the action of the Lie operad, so it is free on some sub-basis of it.
4. By a spectral sequence argument, the pre-Lie operad is free with the same basis.

\[\square \]

Basis: by work of Dotsenko–Flynn-Connolly using the Koszul complex $K(\text{PreLie}, \text{Lie}, 1)$ to compute bar homology.
A question of J.-L. Loday

Dendriform algebra: a vector space V endowed with two operations $x_1 \prec x_2$ and $x_1 \succ x_2$ plus three identities.

\[
(x_1 \prec x_2) \prec x_3 - x_1 \prec (x_2 \prec x_3) = x_1 \prec (x_2 \succ x_3),
\]
\[
(x_1 \succ x_2) \succ x_3 - x_1 \succ (x_2 \succ x_3) = -(x \prec x_2) \succ x_3
\]
\[
(x_1 \succ x_2) \prec x_3 - x_1 \succ (x_2 \prec x_3) = 0.
\]
A question of J.-L. Loday

Dendriform algebra: is a vector space V endowed with two operations $x_1 \prec x_2$ and $x_1 \succ x_2$ plus three identities.

▶ The operation $x_1 \circ x_2 = x_1 \prec x_2 - x_2 \succ x_1$ is pre-Lie.

\[
2(x_1x_2)x_3 - x_1(x_2x_3) = x_1(x_2x_3)
\]

Pedro Tamaroff Trinity College Dublin
A question of J.-L. Loday

Dendriform algebra: is a vector space V endowed with two operations $x_1 \prec x_2$ and $x_1 \succ x_2$ plus three identities.

- The operation $x_1 \circ x_2 = x_1 \prec x_2 - x_2 \succ x_1$ is pre-Lie.
- The operation $x_1 \cdot x_2 = x_1 \prec x_2 + x_2 \succ x_1$ is Zinbiel\(^2\) up to $(x_1 \circ x_3) \circ x_2$.

\[2(\langle x_1 x_2 \rangle x_3 - x_1 \langle x_2 x_3 \rangle) = x_1 \langle x_2 x_3 \rangle\]
A question of J.-L. Loday

Dendriform algebra: is a vector space V endowed with two operations $x_1 \prec x_2$ and $x_1 \succ x_2$ plus three identities.

- The operation $x_1 \circ x_2 = x_1 \prec x_2 - x_2 \succ x_1$ is pre-Lie.
- The operation $x_1 \cdot x_2 = x_1 \prec x_2 + x_2 \succ x_1$ is Zinbiel\(^2\) up to $(x_1 \circ x_3) \circ x_2$.
- We obtain a morphism $\text{PreLie} \rightarrow \text{Dend}.$

\[2(x_1x_2)x_3 - x_1(x_2x_3) = x_1(x_2x_3) \]
A question of J.-L. Loday

Dendriform algebra: is a vector space V endowed with two operations $x_1 \prec x_2$ and $x_1 \succ x_2$ plus three identities.

- The operation $x_1 \circ x_2 = x_1 \prec x_2 - x_2 \succ x_1$ is pre-Lie.
- The operation $x_1 \cdot x_2 = x_1 \prec x_2 + x_2 \succ x_1$ is Zinbiel\(^2\) up to $(x_1 \circ x_3) \circ x_2$.
- We obtain a morphism $\text{PreLie} \longrightarrow \text{Dend}$.
- J.-L. Loday wanted to know if a PBW-type theorem existed here.

\[2(x_1 x_2) x_3 - x_1 (x_2 x_3) = x_1 (x_2 x_3) \]
A question of J.-L. Loday

Dendriform algebra: is a vector space V endowed with two operations $x_1 \prec x_2$ and $x_1 \succ x_2$ plus three identities.

- The operation $x_1 \circ x_2 = x_1 \prec x_2 - x_2 \succ x_1$ is pre-Lie.
- The operation $x_1 \cdot x_2 = x_1 \prec x_2 + x_2 \succ x_1$ is Zinbiel\(^2\) up to $(x_1 \circ x_3) \circ x_2$.
- We obtain a morphism $\text{PreLie} \rightarrow \text{Dend}$.
- J.-L. Loday wanted to know if a PBW-type theorem existed here.

Theorem (Dotsenko–T. ’18)

The map $\text{PreLie} \rightarrow \text{Dend}$ has the PBW property.
The proof also follows a filtration argument through polarization.
The proof also follows a filtration argument through polarization.

Proof.

1. Filter the dendriform operad using the number of pre-Lie brackets an operation uses (polarize the products $≺, ⊼$).
A question of J.-L. Loday

The proof also follows a filtration argument through polarization.

Proof.

1 Filter the dendriform operad using the number of pre-Lie brackets an operation uses (polarize the products \(\prec, \succ\)).

2 The associated graded module is exactly the operad controlling the pre-Poisson algebras of M. Aguiar.
The proof also follows a filtration argument through polarization.

Proof.

1. Filter the dendriform operad using the number of pre-Lie brackets an operation uses (polarize the products $≺, ⊿$).

2. The associated graded module is exactly the operad controlling the pre-Poisson algebras of M. Aguiar.

3. This operad has a basis of tree monomials that is preserved under the action of the pre-Lie operad, so it is free on some sub-basis of it.
The proof also follows a filtration argument through polarization.

Proof.

1. Filter the dendriform operad using the number of pre-Lie brackets an operation uses (polarize the products \(<, >\)).

2. The associated graded module is exactly the operad controlling the pre-Poisson algebras of M. Aguiar.

3. This operad has a basis of tree monomials that is preserved under the action of the pre-Lie operad, so it is free on some sub-basis of it.

4. By a spectral sequence argument, the dendriform operad is free with the same basis.
Further directions

One of the upshots of having written our work in the language of monads and modules is that we can extrapolate it to more complex settings.
Further directions

One of the upshots of having written our work in the language of monads and modules is that we can extrapolate it to more complex settings.

Differential graded objects. A natural direction to move towards is that of ‘derived’ results: what happens if we allow our objects to be differential graded or allow for homotopy algebras?
Further directions

One of the upshots of having written our work in the language of monads and modules is that we can extrapolate it to more complex settings.

Differential graded objects. A natural direction to move towards is that of ‘derived’ results: what happens if we allow our objects to be differential graded or allow for homotopy algebras?

Operads as algebras. We can also produce an interesting feedback loop if we consider coloured operads: every operad can be made into a pre-Lie algebra, so there is an enveloping operad functor whose inputs are pre-Lie algebras.
Envelopes of homotopy algebras

We can allow $\alpha : P \to Q$ to be a morphism of dg operads. What does it mean to have a PBW property here?

Definition (Khoroshkin–T. '19)
We say α is derived PBW if the natural transformation $H(\alpha)! \to H(\alpha(V))$ is a natural isomorphism for every P-algebra V.

As the definition shows, the idea is to obtain control on the homology of universal envelopes of 'complicated' algebras through the non-dg envelope $H(\alpha)!HV$.
Envelopes of homotopy algebras

We can allow $\alpha : P \to Q$ to be a morphism of dg operads. What does it mean to have a PBW property here?

Definition (Khoroshkin–T. ’19)

We say α is derived PBW if the natural transformation

$$H(\alpha)_!(HV) \to H(\alpha_!(V))$$

is a natural isomorphism for every P-algebra V.

Pedro Tamaroff
Trinity College Dublin

Poincaré–Birkhoff–Witt theorems
Envelopes of homotopy algebras

We can allow $\alpha : P \rightarrow Q$ to be a morphism of dg operads. What does it mean to have a PBW property here?

Definition (Khoroshkin–T. ’19)

We say α is derived PBW if the natural transformation

$$H(\alpha)_!(HV) \rightarrow H(\alpha_!(V))$$

is a natural isomorphism for every P-algebra V.

As the definition shows, the idea is to obtain control on the homology of universal envelopes of ‘complicated’ algebras through the non-dg envelope $H(\alpha)_!(HV)$.
Almost-freeness

In this case, the ‘correct’ notion is that of almost-freeness\(^3\)

\(^3\)Dating back to ‘dg-homological algebra’, work of Adams on cobar, etc.
Almost-freeness

In this case, the ‘correct’ notion is that of almost-freeness\(^3\)

Definition

A module is almost free if it admits a filtration whose associated graded module is homotopy equivalent to a free module on a basis of cycles.

\(^3\) Dating back to ‘dg-homological algebra’, work of Adams on cobar, etc.
Almost-freeness

In this case, the ‘correct’ notion is that of almost-freeness\(^3\)

Definition

A module is almost free if it admits a filtration whose associated graded module is homotopy equivalent to a free module on a basis of cycles.

The main result we obtained with A. Khoroshkin [KT20] is the following:

\(^3\)Dating back to ‘dg-homological algebra’, work of Adams on cobar, etc.
Almost-freeness implies dPBW

Theorem (Khoroshkin–T. ’19)

If $\alpha : P \longrightarrow Q$ makes Q into an almost free right P-module with basis of cycles X, then α is derived PBW and we have a natural isomorphism

$$H(\alpha_!(V)) \longrightarrow X(HV).$$

Corollary: the A_∞ operad is almost free over the L_∞ operad by techniques coming from homological perturbation theory, producing a unified approach to previous work of V. Baranovsky and J. Moreno-Fernández.
Almost-freeness implies dPBW

Theorem (Khoroshkin–T. ’19)

If $\alpha : P \rightarrow Q$ makes Q into an almost free right P-module with basis of cycles X, then α is derived PBW and we have a natural isomorphism

$$H(\alpha_!(V)) \rightarrow X(HV).$$

Corollary: the A_∞ operad is almost free over the L_∞ operad by techniques coming from homological perturbation theory, producing a unified approach to previous work of V. Baranovsky and J. Moreno-Fernández.
Some consequences

Idea: there is a filtration on Ass_∞ for which $\text{gr} \text{ Ass}_\infty = \text{Poiss}_\infty$ and that Poiss_∞ is chain homotopy equivalent to $\text{Com} \circ \text{Lie}_\infty$.

- The homology groups of $U(\mathfrak{g})$ for any L_∞-algebra \mathfrak{g} are given by $S(H(\mathfrak{g}))$.
Some consequences

Idea: there is a filtration on Ass_∞ for which $\text{gr} \, \text{Ass}_\infty = \text{Poiss}_\infty$ and that Poiss_∞ is chain homotopy equivalent to $\text{Com} \circ \text{Lie}_\infty$.

- The homology groups of $U(\mathfrak{g})$ for any L_∞-algebra \mathfrak{g} are given by $S(H(\mathfrak{g}))$.
- Quillen quasi-isomorphism: for any L_∞-algebra \mathfrak{g} there is a quasi-isomorphism $C(\mathfrak{g}) \to BU(\mathfrak{g})$.
Some consequences

Idea: there is a filtration on \(\text{Ass}_\infty\) for which \(\text{gr}\ \text{Ass}_\infty = \text{Poiss}_\infty\) and that \(\text{Poiss}_\infty\) is chain homotopy equivalent to \(\text{Com} \circ \text{Lie}_\infty\).

- The homology groups of \(U(\mathfrak{g})\) for any \(L_\infty\)-algebra \(\mathfrak{g}\) are given by \(S(H(\mathfrak{g}))\).
- *Quillen quasi-isomorphism:* for any \(L_\infty\)-algebra \(\mathfrak{g}\) there is a quasi-isomorphism \(C(\mathfrak{g}) \longrightarrow BU(\mathfrak{g})\).
- The models of Baranovsky and of Moreno–Fernández are \(A_\infty\)-isomorphic and \(A_\infty\)-quasi-isomorphic to the universal envelope of Lada–Markl.
There is a map $\text{PreLie}_\mathbb{N} \to \text{nsOp}$ from the operad controlling weight-graded pre-Lie algebras to the operad controlling ns-operads. An open question is

Does this morphism satisfy the PBW property?

Consequence: present resolutions of operads as envelopes of pre-Lie algebras, opening a door to resolving complicated operads. We can also attempt to explicitly compute the higher composition maps of certain homotopy (co)operads.
There is a map $\text{PreLie}_\mathbb{N} \rightarrow \text{nsOp}$ from the operad controlling weight-graded pre-Lie algebras to the operad controlling ns-operads. An open question is:

Open question

Does this morphism satisfy the PBW property?
Coloured envelopes

There is a map $\text{PreLie}_\mathbb{N} \rightarrow \text{nsOp}$ from the operad controlling weight-graded pre-Lie algebras to the operad controlling ns-operads. An open question is:

Open question

Does this morphism satisfy the PBW property?

Consequence: present resolutions of operads as envelopes of pre-Lie algebras, opening a door to resolving complicated operads. We can also attempt to explicitly compute the higher composition maps of certain homotopy (co)operads.
R. Campos and P. Tamaroff, *Differential forms on smooth operadic algebras*.

